

Operations and Maintenance (O&M): A Comparative Analysis of the Cost-Efficiency of Public Private Partnerships (P3s) and Conventional Project Delivery Models

Jonathan Gifford (jgifford@gmu.edu), Carter B. Casady (cbcasady@stanford.edu) & **Mustafa Sever** (<u>msever@gmu.edu</u>)

Prepared for The 71st North American Meetings of the Regional Science Association International November 2024 – New Orleans, Louisiana

Agenda

- Introduction
- Research Motivation
- Research Objectives
- Challenges
- Methodology
- Findings
- Conclusions
- Recommendations

Introduction

Conventional "Design-Bid-Build" Model vs. Public-Private Partnership (P3) "Design-Build-Finance-Operate-Maintain" Model

Operation & Maintenance (O&M) is generally the longest and costliest phase of infrastructure management.

Design and Construction phases are significantly shorter than the O&M phase which usually lasts at least 20 years for relevant stakeholders.

Research Motivation

- 1. Previous research and academic literature show governments across the U.S. have struggled to keep up with the maintenance of infrastructure.
- 2. There is little available research on whether and how the P3 and conventional project delivery models affect the long-term operations and maintenance (O&M) costs of road projects.

Research Question & Objectives

Research Question: Do P3s deliver infrastructure at a lower lifecycle cost than conventional delivery?

Research Objectives:

- 1. Understand the existing evidence on long-term O&M periods of large transportation infrastructure projects,
- 2. Investigate and compare the operations and maintenance costs of selected mature projects,
- 3. Identify possible determinants and consequences of P3 and conventional projects' long-term O&M performance

Schar School of Policy and Government CENTER FOR INFRASTRUCTURE **IVATE PARTNERSHIP POLICY**

Challenges

- Lack of previous literature
 - While this strengthens the motivation for the paper, any additional sources would have been helpful for data collection
- Access to data
 - Data for O&M costs for both traditional projects and P3s are not easily accessible
- Comparison between traditional projects and P3s
 - Not comparing apples to apples, P3s have KPIs they need to meet; states and localities can defer maintenance when required
 - States' data systems do not necessarily monitor specific facilities but rather focus on roadway systems (i.e., interstates, primary, secondary)

Methodology

□ Literature review;

□ Analysis of the financial statements of public and private highway operating

organizations;

□ Case studies of selected facilities and systems; and

□ Interviews with subject matter experts (SMEs).

Findings: Key Performance Indicators (KPIs)

□ Comprehensive Literature Review:

• Identified relevant journals and meticulously selected papers crucial to the study.

□ Systematic Analysis:

• Conducted a systematic and in-depth examination of the chosen papers to extract valuable insights.

□ KPI Selection Criteria:

• Employed specific criteria outlined in the Table to carefully select a set of O&M KPIs.

Findings: KPIs

KPI	Unit of Measurement	Sources		
Structural Condition	Number of deficient bridges	(Shaw, 2003); (Garvin et al., 2011), (FHWA, 2016)		
Pavement Condition	International Roughness Index	(Shaw, 2003); (Garvin et al., 2011), (FHWA, 2016); (Lima & Cruz, 2019)		
Operations and Maintenance Costs	Operation and Maintenance Expenditure per Lane Mile	(Shaw, 2003); (Yuan et al., 2009); (Adams, 2011); (Lima & Cruz, 2019)		
Traffic Volume	Annual Average Daily Traffic	(Shaw, 2003); (Garvin et al., 2011); (Mladenovic et al., 2013); (FHWA, 2016)		
Incidents	Fatal Incidents per Million Vehicle- Miles	(Shaw, 2003); (Garvin et al., 2011); (Yuan et al., 2009); (Mladenovic et al., 2013); (FHWA, 2016)		
Speed/Reliability	Roadway Clearance Time	(Shaw, 2003); (Garvin et al., 2011); (FHWA, 2016)		

Table 1 - Identified O&M KPIs After a Systematic Review of the Literature

60%

Findings: Database Analysis

Figure 1 - Frequency of Reported O&M Expense Categories

Case Study: Dulles Greenway vs. Dulles Toll Road

Figure 2 - Dulles Greenway Map

Figure 3 - Dulles Toll Road and Airport Access Highway Course

Case Study: Dulles Greenway vs. Dulles Toll Road

Project Name	State	Delivery Model	Length (Miles)	Lane Miles	OpEX	OpEX / Lane Miles
Dulles Greenway	Virginia	DBFOM - P3*	14	84	\$15,182,643	\$180,745.75
Dulles Toll Road	Virginia	Design-Build	14	112	\$28,981,600	\$258,764.285
<i>Source:</i> Compilation taxes paid to Loudou	s by the auth n County.	ors. *The roadway as	sets and right	-of-way are priv	ately owned and	d are subject to property

TABLE 2 - OPEX PERFORMANCE OF DULLES GREENWAY & DULLES TOLL ROAD

Case Study: Dallas/Ft. Worth TEXpress vs. NTTA Systems

Figure 4 - TEXPRESS Lanes System Map

Figure 5 - Map of the NTTA System

Case Study: Dulles Greenway vs. Dulles Toll Road

System Name	State	Delivery Model	Centerline Miles	Lane Miles	OpEX	OpEX / Lane Miles
Private TEXpress	Texas	DBFOM - P3	36.7	173.4	\$69,948,000	\$403,391
NTTS	Texas	Design-Build	151	1145	\$277,565,495	\$242,415
Sc	ource: autho	ors' compilations.				

TABLE 2 - OPEX PERFORMANCE OF DULLES GREENWAY & DULLES TOLL ROAD

Findings from Interviews: Hidden Differences Approach

A multifaceted KPI approach is essential but may still miss "hidden differences" between projects due to:

- Stakeholder Preferences: Different priorities (cost, safety, satisfaction) may not align with standard metrics.
- Contractual Agreements: Specifics can affect resource allocation and measurement.
- Project Characteristics: Unique factors like size and complexity can influence performance.

Conclusion

- Inconsistency in Reporting: The presence of 77 different elements under OpEX highlights challenges for meaningful comparisons.
- Diverse Evaluation Criteria: Utilizing multiple key performance indicators is essential for a comprehensive evaluation of O&M performance.
- However, Even multifaceted KPIs might not fully capture "hidden differences" between projects.

Recommendations

Explore reasons behind varying O&M expenditure reporting practices across agencies.

Adopt a Three-Category Reporting Framework:

- Operating Fees
- Preservation Fees
- General/Administrative Fees

Investigate high-level criteria for comparing infrastructure delivery models.

Thank you!

QUESTIONS

COMMENTS

FEEDBACK